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Abstract- -In heterogeneous strain fields, the strain may be isotropic at some points or along some lines called 
isotropic points and isotropic lines. These isotropic features are known in various strain environments such as 
folds, diapirs, nappes or shear zones. Mechanical instabilities involving flow-cells (diapirism and folding) are able 
to produce simultaneously isotropic points and lines whose dimensions, location and migration are controlled by 
the flow pattern and history. Many other isotropic points can be understood in terms of superposition of 
elementary flows. Some examples such as neighbouring diapirs, synkinematic diapirs, shear zone terminations 
and spreading-sliding nappes are presented. Finally, some three-dimensional aspects and general properties of 
isotropic points and lines are discussed. 

INTRODUCTION 

MANY heterogeneous strain fields, in two dimensions, 
present local points or lines of isotropic strain (i.e. strain 
ellipses reduced to circles). These strain features here 
called 'isotropic points' or 'isotropic lines' may be 
defined also by the strain trajectory patterns around 
them. lsotropic points are distinguishable by their strain 
trajectories (Fig. la). From the common triangular pat- 
tern of the trajectories (Fig. la) some authors have used 
the term 'triple points' (Brunet  al. 1981, Brun & Pons 
1981). lsotropic lines, however, separate mutually- 
orthogonal principal trajectories on each side (Fig. lb). 
In a plane-strain field, the strain is zero at isotropic 

points and lines, and they can then be termed neutral 
points and neutral lines (e.g. Ramsay 1967, p. 416). 

As demonstrated by many strain analyses cleavage is 
quasi-parallel to the A1A2 plane of the finite strain ellip- 
soid. Thus mapping of cleavage trajectories is therefore 
a simple and accurate method for depicting isotropic 
features in nature. 

In this paper, a review is presented of various situa- 
tions in which isotropic points and lines are known or 
suspected. An attempt is given to relate strain fields to 
velocity fields to test similarities and differences between 
isotropic points and lines in different kinematic environ- 
ments. General properties of these isotropic features in 
terms of flow and progressive deformation are discussed. 

a 

b 
Fig. 1. (a) Idealized isotropic point (IP) and (b) isotropic lines (1L). 

Lines, At trajectories; dotted lines, A3 trajectories. 

FLOW MODELS 

Velocity fields and strain fields 

Using the stream-function method (see Jaeger 1969, 
p. 140, Ramberg 1981 chapters 7 and 9) one can easily 
compute the velocities and values and orientations of 
principal strains at any point in a given fluid domain (see 
Appendix). A number of different models can be 
obtained by superposition of elementary stream func- 
tions. In the rest of the paper, some of these are pre- 
sented which may be used as qualitative models of 
natural or experimental situations in which isotropic 
points and lines are known. 

Sources, sinks and doublets 

A source is characterized by a radial flow in which the 
velocity is only dependent on the radius. The stream 
function is 

Q log r (1) ~=~ 

where r is the radius and Q the power of the source. For 
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Fig. 2: Flow lines for source, sink, source + sink, and doublet. So: 
source; Si: sink. 

I 
I 
\ 

\ \ \  

I / 
\ I 

I I 
I I 

I 
I 
I 

~ . - ~ /  / 

t . . -  / / 

I / i /  

/ Symmetry / / -  ~ 

I I I ' ~  Ip 
I / I,./l.. -Ce.ter 
\ "~ ~ o j ~ [  of the 

- -  i / / i  doublet 

/ I  
/ / \  

/ 1 1  
/ \ l  

I \ l  

Fig. 3. Strain field due to a doublet. Lengths of bars are proportional 
to A l values. Near the centre of the doublet principal strain directions 
have been smoothed by hand. Away from the centre of the doublet, 
the magnitude of A l varies only slightly. IP: Isotropic point; IL: 

Isotropic line. 

Fig. 4. Flow cells during the early growth of diapirs, after Elder (1977). 
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Fig. 5. (a) Strain field resulting from a doublet near a rigid boundary 
(method of images, see Johnson 1970, pp. 267,417). (b) A1 trajectories 
in a centrifuged diapir model after Dixon (1975). Viscosity contrast 
between overburden and source layer: 1/10. IP, isotropic point; IL, 

isotropic line. 

a source, Q is positive, and for a sink negative (Fig. 2). If  
we combine a source and a sink separated by a distance 
a, the flow pat tern  is characterized by circular s t ream 
lines (Fig. 2). If  a become  very small (i.e. the source is 
quasi-superposed with the sink), the flow takes the 
well-known pat tern of 'eddies '  or flow cells (Fig. 2). For 
this case, the s t ream function is: 

@ = X Y (2) 
27r x 2 + yZ 

where x and y are the coordinates of a point,  and X the 
momen t  of  the doublet.  

It is especially interesting to look at the strain pat tern 
produced by a doublet  (Fig. 3). We note the existence of 
an isotropic line and two isotropic points well defined by 
the principal A 1 trajectories. 

ASSOCIATIONS OF I S O T R O P I C  POINTS 
AND LINES RESULTING FROM 

DOUBLET-TYPE F L O W  

Diapirs 

Numerical  and experimental  models  of diapirism 
show that the velocity field during a diapir growth may 

be simulated by eccentric flow cells (Elder 1977) (Fig. 4). 
Such a pat tern is close to that of a doublet  near  a rigid 
boundary (Fig. 5a), and the resulting strain fields (Figs. 
5a & b) are comparable ,  if we exclude some peculiarities 
due to viscosity contrasts in the experimental  models 
(Dixon 1975). 

During the evolution of the diapir, the isotropic line 
migrates towards the centre of the diapir core and is 
progressively reduced to a point (Fig. 6). A consequence 
of this change in the isotropic line configuration is that 
subvertically stretched areas become progressively hori- 
zontally stretched. In rocks, such a kinematic evolution 
can produce superposed fabric (crenulation of an early 
piano-linear fabric) giving a material  trace of the migra- 
tion of the isotropic line (Dixon 1975, Schwerdtner 1977, 
Brun & Choukroune 1981). 

Buckle  fo lds  

During buckling of a competent  layer, the velocity 
field in the layer can be represented by flow cells. This 
has been predicted theoretically (Goguel  1948, p. 302) 
and verified experimentally (Cobbold 1975) (Fig. 7). As 
buckling progresses the flow cells take on an elongate shape 
(Fig. 7). Elongate flow cells may be readily obtained if a 
doublet  s t ream function is superimposed on a 'regional 
flow' such as pure shear or simple shear. Taking the 
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Fig. 6. Evolution of isotropic point (IP) and line (1L) during a diapir 
development, after experimental models by Dixon (1975). 

Fig. 7. Flow cells during buckle folding, after an experimental model 
by Cobbold (1975). 

example of a pure-shear doublet superposition, the 
corresponding stream function is: 

q~ _ X Y + Vxy  (3) 
2~ x 2 + y2 

where the second term is the stream function of the pure 
shear, V being a velocity constant. 

A strain field for particular values of X and V is given 
by Fig. 8(a). Only the upper half of the doublet is shown 
representing an anticline; the neighbouring syncline has 
a rotational symmetry. We note the existence of one 
isotropic line and one isotropic point above it. This 
strain pattern is well known in numerical models 
(Dieterich 1969), and in experiments (Roberts & StrOm- 
g~rd 1973, Cobbold 1975, Soula 1981) (Fig. 8b), and the 
corresponding cleavage pattern has been observed in the 
field (Ramsay 1967, Roberts 1971). These experimental 
models show that isotropic points and lines migrate 
during deformation (see for example fig. 15 in Roberts & 
StrOmg~rd 1973). The same effect can be produced in 
the stream-function model (equation 3) if we give differ- 
ent lifetimes to the doublet and the pure shear. During 
the doublet life, the isotropic features migrate slowly 
outwards from the centre of the doublet. At the death of 
the doublet, if the pure shear goes further, the isotropic 
point migrates inwards to meet the isotropic line. If the 

Fig. 8. (a) Strain field resulting from the superposition of a doublet and 
a pure shear (equation 3). (b) Strain field associated with buckle folds, 
after an experimental model by Roberts & Str6mg~rd (1973). (IP, 

isotropic point; IL, isotropic line; broken lines, At trajectories.) 

pure shear is maintained for a sufficiently long time, the 
isotropic features disappear. Looking at amplification 
curves obtained in many experimental models (see Cob- 
bold 1976, fig. 1), we can associate the 'explosive amplifi- 
cation' time during buckling, of Sherwin & Chapple 
(1968), with the life time of a doublet. The existence of 
isotropic points and lines in a particular strain pattern 
may be understood in terms of local and transient 
perturbations by doublets in a pure shear flow (eventu- 
ally steady). In theory and experiments, it has been 
demonstrated that the mechanical amplification depends 
on the viscosity contrast, which is also a critical factor for 
the development of the isotropic points (Roberts & 
Str6mg~rd 1973, Cobbold 1975, Manz & Wickam 1978, 
Soula 1981). In the present model, the moment of the 
doublet plays the same role. 

As in diapirs, the migration of isotropic features in 
buckle folds has some interesting structural conse- 
quences. The cleavages parallel to the outer arc may be 
crenulated, indicating inward migration of the isotropic 
point (see Le Corre 1978, fig. 97). 

I S O T R O P I C  P O I N T S  R E S U L T I N G  F R O M  
S U P E R P O S I T I O N  O F  S E V E R A L  

E L E M E N T A R Y  
F L O W S  

Synkinematic  diapiric plutons 

The diapiric emplacement of a pluton in the crust is 
often characterized by an increase of diameter called the 
'ballooning effect' (Ramsay 1975, Holder 1979) or radial 
distension (Schwerdtner 1972, Morgan 1980). In a hori- 
zontal plane, this process may be simulated by a source 
flow (equation 1). If the pluton emplacement is syntec- 
tonic or synkinematic (i.e. synchronous with a regional 
deformation), a better model may be obtained by super- 
position of a source and a regional flow. An example of 
superposition of a source and a simple shear is shown in 
Fig. 9. The principal stretch trajectories define two 
isotropic points at the extremities of the source area. 
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Fig. 9. Strain field resulting from the superposition of a source and a 
simple shear, h~ trajectories (short lines) near isotropic points have 

been smoothed by hand. 

During the source life, the isotropic points migrate 
outwards from the source centre. If the regional flow is 
maintained after the source ceases the isotropic points 
migrate inwards. 

Natural and numerical examples of this type have 
been described by Ledru & Brun (1976) and Brun & 
Pons (1981) as shown in Fig. 10(b). 

Neighbouring diapirs 

The juxtaposition of at least three sources gives rise to 
one isotropic point whose location depends on the rela- 
tive power of the sources. In the field, such patterns can 
be observed between neighbouring diapirs (Fig. 10a). 

Terminations of  shear zones 

bers one of which, in plane strain, presents isotropic 
points (Fig. 11). The development of a shear zone 
corresponds to an elongate vortex-type flow cell (see 
Coward 1976, fig. 13c and Cobbold 1977, fig. 3a). If the 
shear zone is isolated, the displacements and resulting 
strains diffuse in the surrounding of the shear zone and 
result in curvature at the shear zone ends (see Coward 
1976, fig. 13). If the shear zone is straight, the vortex flow 
may be accommodated at the ends of the shear zone by 
flow in channels orthogonal or strongly oblique to the 
shear zone (Fig. 11). The development of an isotropic 
point in such a system may be understood, as in the 
previous models, in terms of the superposition of 
elementary flows (here banded). 

Spreading-sliding nappes 

Experiments by Brun & Merle (1982) investigated a 
viscous slab (silicone putty) flowing under its own weight 
on an inclined plane (Fig. 12). The back part of the slab 
was only affected by spreading and flowed up-hill (for 
uphill flow, see Elliott 1976). The rest of the slab was 
subjected to simultaneous spreading and sliding, and 
flowed down-hill. At the junction of these two parts, the 
strain field shows an isotropic point (Fig. 12). The 
experiments (Brun & Merle 1982) also demonstrate an 
up-hill migration of the isotropic point as the up-hill flow 
decreases due to strong thinning of the slab. 

This experimental result which has not yet been ver- 
ified in the field shows, as previously, an isotropic point 
directly related to the velocity field and whose location, 
in particular, is controlled by the two different flow 
systems involved. 

Ideal shear zones are produced by band-like flow 
systems (see Cobbold 1977). In most natural cases, shear 
zones are arranged in complex patterns. One of the main 
problems associated with various types of shear zones in 
the field, is the nature of their terminations. Ramsay & 
Allison (1980) have proposed two theoretical end mem- 

THREE-DIMENSIONAL ASPECTS OF 
ISOTROPIC FEATURES 

All the situations considered so far have been two- 
dimensional. In models, this is done for mathematical or 
experimental convenience. The terms isotropic lines 

b 
Fig. 10. (a) A1A2 strike lines between neighbouring mantled gneiss domes (Kuopio, Finland), after Brunet al. (1981). 

(b))tlA 2 strike lines in and around diapiric plutons (Sierra Morena, Spain), after Brun &Pons (1981). 
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Fig. 11. AI trajectories showing isotropic points at the termination of a 
shear zone. Plane-strain model after Ramsay & Allison (1979). 

Up-hill Down-hill 
spreading spreoding + sliding 

/ / / /  

))) 

Fig. 12. A1 trajectories in a spreading-sliding nappe model flowing on a 
plane inclined at 9 °, after an experimental model by Brun & Merle 

(1982 and in prep.) 
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Fig. 13. Three-dimensional sketches of constrictional lines around 
synkinematic diapirs. (a) Thrusting shear, (b) transcurrent shear. The 
lines are represented in planes parallel to the mean attitude of A~A 2 

surfaces away from the diapirs. 

and isotropic points, which describe features in plane 
view will correspond to surfaces and lines in three dimen- 
sions. This is important  not only from the terminology 
point of view. It does have some important  consequences 
as many natural strain fields are not two-dimensional. 

On plane sections of three-dimensional strain fields, 
isotropic points can correspond to sectional ellipses of 
true flattening or true constrictional strain ellipsoids. In 
three dimensions, such points are arranged along lines 
or surfaces that are not inextended. They are lines or 
surfaces of constriction or flattening. On plane section 
(e.g. outcrop maps) the principal trajectories around 
them display the same pattern (Fig. 1) as they do in 
plane-strain field. Therefore ,  I suggest that these lines or 
surfaces may have the same significance in three-dimen- 
sional strain fields as true isotropic features do in two- 
dimensional strain fields. Even if a general discussion of 
this problem is not possible here,  a few examples may be 
given. 

(1) In the case of an interference between the balloon- 
ing effect of a diapir and a regional deformation,  the 
isotropic line that develops is stretched along its length 
as the diapir increases in diameter  (Fig. 13). Then the 
finite strain along the line is of constriction type (Brun 
1982). 

(2) In one case of natural interfering diapirs, it has 
been verified by strain measurements that isotropic 
points (intersections of isotropic lines with the outcrop 
surface) are located in constriction-type strain areas (cf. 
B rune t  al. 1981). 

(3) In an axially-symmetric diapir, the isotropic sur- 
face that develops is extended in all directions, in its 
upper part (see Fig. 6), as the diameter  of the diapir 
increases. Thus the finite strain within this surface is of 
flattening type. 

From a theoretical point of view, it is possible that: 
(a) an isotropic surface can reduce laterally to give an 

isotropic line; 
(b) there can exist in some environments real iso- 

tropic points in three dimensions; 
(c) during progressive deformation an isotropic sur- 

face can reduce to an isotropic line, and an isotropic line 
to an isotropic point; and 

(d) during progressive deformation an isotropic fea- 
ture may have a very short life (see for example Hudles- 
ton, this issue, fig. 4a). 

For these reasons, firstly the term neutral point should 
be avoided because it implies a plane-strain field. Sec- 
ondly, even if the detection of isotropic features is easily 
done by strain-trajectory mapping it should be useful, 
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for three-dimensional interpretation, to have strain mea- 
surements as near as possible to isotropic surfaces, 
points and lines. Thirdly, because isotropic features can 
migrate and change from a surface to line or a line to a 
point, or completely disappear during progressive defor- 
mation, careful examination of small-scale structures 
and fabrics in the vicinity of isotropic features is neces- 
sary. Such kinematic data should be very important for 
the understanding of deformation history. 

(4) Because of the generality of three-dimensional 
strain in nature, many so-called isotropic features could 
be in fact true constriction or the flattening features. 
Strain measurements should indicate if this is the case. 
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DISCUSSION AND CONCLUSIONS 

Mechanical instabilities giving rise to flow cells are 
able to produce strain fields with isotropic points and 
lines. From the kinematic point of view, these 
instabilities may be modelled by a doublet. The develop- 
ment of isotropic points and lines in the strain field can 
be attributed to the locally divergent and convergent 
pattern of the flow lines in a doublet. This interpretation 
is valid for diapirs. In the case of buckle folding, the 
existence of isotropic lines and points in the finite strain 
field depends on the relative lifetimes of the doublet flow 
(perturbation) and the regional flow. 

It is important to note that the doublet-type flows is 
the simplest flow system able to produce an isotropic 
strain line. In fact, it produces simultaneously two iso- 
tropic strain points and one isotropic strain line. 

The review presented in this paper shows that iso- 
tropic features occur in various tectonic strain fields. An 
attempt has been made to relate strain patterns to 
velocity patterns, and in many cases we have seen that 
isotropic points and lines may be easily understood in 
terms of simple or composite flows. In this sense, iso- 
tropic features are very useful to qualitative interpreta- 
tion of finite strain fields in terms of progressive deforma- 
tion. The conclusions are as follows: 

(1) lsotropic points and lines can develop simultane- 
ously in a doublet type flow, acting alone (diapirism). 

(2) Many superpositions of elementary flows can pro- 
duce isotropic features: 

(a) association of isotropic point and line by doub- 
let perturbation in a regional flow (e.g. buckle folding); 

(b) one isotropic point between neighbouring 
sources (interfering diapirs); 

(c) two isotropic points from a source perturbation 
in a regional flow (synkinematic diapirs) and 

(d) junction of two flows (sliding-spreading nap- 
pes, shear zone terminations). 

(3) In most flow situations, the isotropic points and 
lines migrate across the medium: they are not material 
features. If fabrics are produced, it should be possible by 
careful examination, to obtain some indication of their 
displacements. Moreover, the spatial stability of iso- 
tropic points and lines is subjected to the stability (or 
life-time) of the involved flows. Thus, data concerning 
their migration can give direct information on the history 
of the flow components (mechanical instabilities, 
spreading in nappes, shear zone propagation, etc.). 
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APPENDIX 

Computation of flow models 

For plane non-inertial strain of an incompressible Newtonian fluid if 
a given stream function ~, satisfies the biharmornic equation: 

04___~ + 2 041]/ q'- 04--~ = O, 
ax 4 OxZy 2 Oy 4 

(4) 

the velocities are given by: 

a,O a~0 
u - and v = - - ,  (5) 

Oy ax 

and one can easily compute the corresponding velocity field. For 
details concerning the derivation of equations (4) and (5) and other 
applications see Jaeger (1969, p. 140) and Ramberg (1981, chapters 
7-9). 

Taking an initially-square grid, finite displacements of the nodes 
have been computed by iterations. Then, orientations and values of 
principal strains have been computed for each element of the deformed 
grid. 

All the computed flow models presented in the paper are steady 
flows. The number of iterations used to obtain a finite-strain pattern 
depends on the magnitude of the increments which depend themselves 
on the nature and place of the constants used in the stream functions 
(cf. Q, x, Vin equations 1-3). 

Complex flow patterns have been obtained by summation of elemen- 
tary stream functions (superposition law). 

Near the singularities of velocity fields (e.g. the centre of a doublet), 
the elements of the grid lost their parallelogram shape. Therefore, in 
these areas principal strains have been determined graphically and 
smoothed by hand (see Fig. 3). 


